Антиблокировочные тормозные системы (АБС) | «Уральский завод дорожных машин»

Антиблокировочные тормозные системы (АБС)

Антиблокировочные тормозные системы (АБС)

СОДЕРЖАНИЕ:

  • Обоснование необходимости применения АБС
  • Назначение и устройство АБС
  • Фаза нормального торможения
  • Фаза удержания давления на постоянном уровне
  • Фаза сброса давления

Обоснование необходимости применения АБС

При прямолинейном движении во время торможения автомобиля на его колесо действуют разные силы: вес автомобиля, тормозная сила и боковая сила. Величина сил зависит от множества факторов, таких как скорость движения автомобиля, размеры колес, состояние и конструкция шин и дорожного полотна, конструкции тормозной системы и ее технического состояния.

Рис. Силы, действующие на колесо при торможении:

G – вес автомобиля; FB – тормозная сила; FS – боковая сила; νF – скорость автомобиля; α – угол увода; ω – угловая скорость

Во время прямолинейного движения автомобиля с постоянной скоростью разницы в скоростях вращения колес не возникает  При этом не возникает также разницы между приведенной скоростью движения автомобиля νF и согласованной с ней усредненной скоростью νR вращения колес, т.е. νF = νR. Под усредненной скоростью вращения колес понимается величина

νR = (νR1+ νR2 + νR3 + νR4)/4,

где νR1…νR4 — скорости вращения каждого колеса в отдельности.

Но как только начинается процесс интенсивного торможения, приведенная скорость автомобиля νF, начинает превышать усредненную скорость νR вращения колес, так как кузов “обгоняет” колеса под действием силы инерции массы автомобиля, т.е. νF >νR.

В такой ситуации между колесами и дорогой возникает явление равномерного умеренного скольжения  Это скольжение является рабочим параметром тормозной системы и определяется как:

λ = (νF – νR)/ νF•100%

Физически рабочее скольжение в отличие от аварийного юза реализуется за счет прогибания протектора колесных шин, сдвига мелких фракций на поверхности дороги, и за счет амортизации автомобильной подвески. Эти факторы удерживают автомобиль от юза и отображают полезную суть рабочего скольжения колеса при его торможении. Ясно, что при этом замедление вращения колеса происходит постепенно и управляемо, а не мгновенно, как при блокировке.

Величина λ названа коэффициентом скольжения и измеряется в процентах. Если λ = 0%, то колеса вращаются свободно, без воздействия на них дорожного сопротивления трению. Коэффициент скольжения λ = 100% соответствует юзу колеса, когда оно переходит в заблокированное состояние. При этом значительно снижаются тормозная эффективность, устойчивость и управляемость автомобиля при торможении.

При появлении эффекта рабочего скольжения, при котором все еще имеет место нормальное качение колес  между ними и дорогой возникает равномерно возрастающее сопротивление трению выражаемое коэффициентом сцепления в направлении движения μHF, которое является функцией от рабочего скольжения γ и создает силу торможения автомобиля FB = K μHFG. К – конст­руктивный коэффициент пропорциональности, зависящий от состояния протектора шин, тормозных колодок  тормозных дисков и тормозных суппортов.

На рисунке представлена зависимость величины относительного скольжения колеса от коэффициента сцепления в направлении движения μHF и коэффициента сцепления в поперечном направлении μS при торможении на сухом бетонном покрытии.

Рис. Зависимость коэффициента сцепления от скольжения колес.

Как видно из рисунке величина относительного скольжения колеса λ достигает своего максимального значения при определенных значениях коэффициента сцепления в направлении движения μHF, при уменьшении коэффициента сцепления в поперечном направлении μS. Для большинства дорожных покрытий при значениях γ, а значит и тормозная сила, в интервале от 10% до 30% μHF достигает максимальной величины и это значение называют критическим (λ)кp. В этих пределах и коэффициент сцепления в поперечном направлении μS имеет достаточно высокое значение, что обеспечивает устойчивое движение автомобиля при торможении, если на автомобиль действует боковая сила.

Вид кривых коэффициента сцепления в направлении движения μHF, и коэффициента сцепления в поперечном направлении μS зависит в значительной степени от типа и состояния дорожного покрытия и шин.

Важно заметить, что при малых γ (от 0% до 7%) сила торможения линейно зависит от скольжения.

При экстренном торможении значительное усилие на педаль тормоза может вызвать блокировку колес. Сила сцепления шин с дорожным покрытием при этом резко ослабевает, и водитель теряет управление автомобилем.

Назначение и устройство АБС

Антиблокировочные системы (АБС) тормозов призваны обеспечить постоянный контроль за силой сцепления колес с дорогой и соответственно регулировать в каждый данный момент тормозное усилие, прилагаемое к каждому колесу. АБС производит перераспределение давления в ветвях гидропривода колесных тормозов так, чтобы не допустить блокирования колес и вместе с тем достичь максимальной силы торможения без потери управляемости автомобиля.

Основной задачей АБС является поддерживание в процессе торможения относительного скольжения колес в узких пределах вблизи λкp. В этом случае обеспечиваются оптимальные характеристики торможения. Для этой цели необходимо автоматически регулировать в процессе торможения подводимый к колесам тормозной момент.

Появилось много разнообразных конструкций АБС, которые решают задачу автоматического регулирования тормозного момента. Независимо от конструкции, любая АБС должна включать следующие элементы:

  • датчики, функцией которых является выдача информации, в зависимости от принятой системы регулирования, об угловой скорости колеса, давлении рабочего тела в тормозном приводе, замедлении автомобиля и др.
  • блок управления, обычно электрон­ный, куда поступает информация от датчиков, который после логической обработки поступившей информации дает команду исполнительным механизмам
  • исполнительные механизмы (моду­ляторы давления), которые в зависи­мости от поступившей из блока управ­ления команды снижают, повышают или удерживают на постоянном уровне давление в тормозном приводе колес

Рис. Схема управления АБС:

1 – исполнительный механизм; 2 – главный тормозной цилиндр; 3 – колесный тормозной цилиндр; 4 – блок управления; 5 – датчик вращения скорости колеса

Процесс регулирования с помощью АБС торможения колеса – цикличес­кий. Связано это с инерционностью самого колеса, привода, а также элементов АБС. Качество регулирования оценивается по тому, насколько АБС обеспечивает скольжение тормозящего колеса в заданных пределах. При большом размахе циклических колеба­ний давления нарушается комфортабельность при торможении «дерга­ние», а элементы автомобиля испытывают дополнительные нагрузки. Качество работы АБС зависит от принятого принципа регулирования, а также от быстродействия системы в целом. Быстродействие определяет циклическую частоту изменения тормозного момента. Важным свойством АБС должна быть способность приспосабливаться к изменению условий торможения (адаптивность) и, в первую очередь, к изменению коэффициента сцепления в процессе торможения.

Разработано большое число принципов (алгоритмов функционирова­ния), по которым работают АБС. Они различаются по сложности, стоимости реализации и по степени удовлетворе­ния поставленным требованиям. Сре­ди них наиболее широкое применение получил алгоритм функционирования по замедлению тормозящего колеса.

Тормозная динамика автомобиля с АБС зависит от принятой схемы установки элементов этой системы. С точ­ки зрения тормозной эффективности, наилучшей является схема с автономным регулированием каждого колеса. Для этого необходимо установить на каждое колесо датчик, а в тормозном приводе – модулятор давления и блок управления. Эта схема наиболее сложная и дорогостоящая.

Существуют более простые схемы АБС. На рисунке б показана схема АБС с регулируемым торможением двух задних колес. Для этого используются два колесных датчика угловых скоростей и один блок управления. В такой схеме применяют так называе­мое низко- или высокопороговое регулирование  Низкопороговое регулиро­вание предусматривает управление тормозящим колесом, находящимся в худших по сцеплению условиях («слабым» колесом). В этом случае тормозные возможности «сильного» колеса недоиспользуются, но создается равенство тормозных сил, что способствует сохранению курсовой устойчивости при торможении при некотором снижении тормозной эффективности. Вы­сокопороговое регулирование, т. е. управление колесом, находящимся в лучших по сцеплению условиях, дает более высокую тормозную эффектив­ность, хотя устойчивость при этом несколько снижается. «Слабое» колесо при этом способе регулирования циклически блокируется.

Рис. Схемы установки АБС на автомобиле

Еще более простая схема приведе­на на рисунке в. Здесь используются один датчик угловой скорости, размещенный на карданном валу, один модулятор давления и один блок управления. По сравнению с предыдущей эта схема имеет меньшую чувствительность.

На рисунке г приведена схема, в которой применены датчики угловых скоростей на каждом колесе, два моду­лятора, два блока управления. В такой схеме может применяться как низко-, так и высокопороговое регулирование. Часто в таких схемах используют смешанное регулирование (например, низ­копороговое для колес передней оси и высокопороговое для колес задней оси). По сложности и стоимости эта схема занимает промежуточное положение между рассмотренными.

Процесс работы АБС может прохо­дить по двух- или трехфазовому циклу.

При двухфазовом цикле:

  • первая фаза – нарастание давления
  • вторая фаза – сброс давления

При трехфазо­вом цикле:

  • первая фаза – нарастание давления
  • вторая фаза – сброс давления
  • третья фаза – поддержание давления на постоянном уровне

При установке на легковом автомобиле АБС возможны замкнутый и ра­зомкнутый тормозные гидроприводы.

Рис. Схема модулятора давления гидростатического тормозного привода

Замкнутый или закрытый (гидро­статический) привод работает по прин­ципу изменения объема тормозной сис­темы в процессе торможения. Такой привод отличается от обычного уста­новкой модулятора давления с дополнительной камерой. Модулятор работает по двухфазовому циклу:

  • Первая фаза – нарастание давления  обмотка электромагнита 1 отключена от источника тока. Якорь 3 с плунжером 4 находится под действием пружины 2 в крайнем правом положе­нии. Клапан 6 пружиной 5 отжат от своего гнезда. При нажатии на тор­мозную педаль давление жидкости, создаваемое в главном цилиндре (вывод II), передается через вывод I к рабочим тормозным цилиндрам. Тормозной момент растет.
  • Вторая фаза – сброс давления: блок управления подключает обмотку электромагнита 1 к источнику питания  Якорь 3 с плунжером 4 переме­щается влево, увеличивая при этом объем камеры 7. Одновременно кла­пан 6 также перемещается влево, перекрывая вывод I к рабочим тор­мозным цилиндрам колес. Из-за увеличения объема камеры 7 давление в рабочих цилиндрах падает, а тормозной момент снижается. Далее блок управления дает команду на нараста­ние давления, и цикл повторяется.

Разомкнутый или открытый тормозной гидропривод (привод высокого давления) имеет внешний источник энергии в виде гидронасоса высокого давления, обычно в сочетании с гидроаккумулятором.

В настоящее время отдается предпоч­тение гидроприводу высокого давления, более сложному по сравнению с гидростатическим, но обладающим необходимым быстродействием.

Рис. Двухконтурный тормозной привод с АБС:

1 – колесный датчик угловой скорости; 2 – модуля­торы; 3 – блоки управления; 4 – гидроаккумулято­ры; 5 – обратные клапаны; 6 – клапан управления; 7 – гидронасос высокого давления; 8 – сливной ба­чок

Тормозной привод имеет два контура, поэтому необходима установка двух авто­номных гидроаккумуляторов. Давление в гидроаккумуляторах поддерживается на уровне 14…15 МПа. Здесь применен двух­секционный клапан управления, обеспечи­вающий следящее действие, т. е. пропор­циональность между усилием на тормозной педали и давлением в тормозной системе. При нажатии на тормозную педаль дав­ление от гидроаккумуляторов передается к модуляторам 2, которые автомати­чески управляются электронными блоками 3, получающими информацию от колесных датчиков 1. На рисунке приведена схема двухфазового золотникового модулятора давления для тормозного гидропривода высокого давления. Рассмотрим фазы ра­боты этого модулятора:

  • Фаза 1 нарастания давления: блок управления АБС отклю­чает катушку соленоида от источника тока. Золотник и якорь соленоида уси­лием пружины перемещены в верхнее по­ложение. При нажатии на тормозную педаль клапан управления сообщает гид­роаккумулятор (вывод I) с нагнетатель­ным каналом модулятора давления. Тор­мозная жидкость под давлением поступает через вывод II к рабочим цилиндрам тормозных механизмов. Тормозной момент растет.
  • Фаза 2 сброса давления: блок управления сообщает катушку соле­ноида с источником питания. Якорь соле­ноида перемещает золотник в нижнее поло­жение. Подача тормозной жидкости в ра­бочие цилиндры прерывается: вывод II рабочих тормозных цилиндров сообщается с каналом слива III. Тормозной момент снижается. Блок управления дает команду на нарастание давления, отключая катуш­ку соленоида от источника питания, и цикл повторяется.

Рис. Схема работы двухфазного модулятора высокого давления:

а – фаза 1; б – фаза 2

В настоящее время более распространены АБС, работающие по трехфазовому цик­лу. Примером такой системы является довольно распространенная система АБС 2S фирмы Бош.

Эта система встраивается в качестве дополнительной в обычную тормозную систему. Между главным тормозным цилиндром и колесными цилиндрами устанавливается нагнетательные (Н) и разгрузочные (Р) электро­магнитные клапаны, которые либо поддерживает на постоянном уровне, либо снижают давление в приводах колес или в контурах. Электромагнитные клапаны приводятся в действие блоком управления, обрабатывающим информацию, поступающую от четырех колесных датчиков.

Блок управления, куда непрерывно поступают данные о скорости вращения каждого колеса и ее изменениях, определяет момент возникно­вения блокировки, затем, при необходимости, производит сброс давления, включает гидронасос, который возвращает часть тормозной жидкости обратно в питательный бачок главного цилиндра.

Рис. Функциональная схема АБС Bosch 2S:

1 – блок управления; 2 – модулятор; 3 – главный тормозной цилиндр; 4 – бачок; 5 – электрогидронасос; 6 — колесный цилиндр; 7 – ротор колесного датчика; 8 – колесный индуктивный датчик; 9 – сигнальная лампа; 10 – регулятор тормозных сил; Н/Р – нагнетательный и разгрузочный электромагнитные клапаны; – .-. входные сигналы БУ; – ­–­ – – выходные сигналы БУ; –––– тормозной трубопровод

В модуляторе АБС скомпонованы электро­магнитные клапаны, гидронасос с аккумуляторами давления жидкости, реле электромагнитных клапанов и реле гидронасоса.

Рис. Электрогидравлический модулятор:

1 – электромагнитные клапаны; 2 – реле гидронасоса; 3 – реле электромагнитных клапанов; 4 – электрический разъем; 5 – электродвигатель гидронасоса; 6 – радиаль­ный поршневой элемент насоса; 7 – аккумулятор давления; 8 – глушитель

Работа системы происходит по программе, подразделяющейся на три фазы: 1 – нормальное или обычное торможение; 2 – удержание давления на постоянном уровне; 3 – сброс давления.

Фаза нормального торможения

При обычном тормо­жении напряжение на электромагнитных клапанах отсутствует, из главного цилиндра тормозная жидкость под давлением свободно проходит через открытые электромагнитные клапаны и приводит в действие тормозные механизмы колес. Гидронасос не работает.

Рис. Фазы торможения:

а) фаза нормального торможения; б) фаза удержания давления на постоянном уровне; в) фаза сброса давления; 1 – ротор колесного датчика; 2 – колесный датчик; 3 – колесный (рабочий) цилиндр; 4 – электрогидравлический модулятор; 5 – электро­магнитный клапан; 6 – аккумулятор давления; 7 – нагне­тательный насос; 8 – главный тормозной цилиндр; 9 – блок управления

Фаза удержания давления на постоянном уровне

При появлении признаков блокировки одного из колес БУ, получив соответствующий сигнал от колесного датчика, переходит к выполнению программы цикла удержания давления на постоян­ном уровне путем разъединения главного и соответствующего колесного цилиндра. На обмотку электромагнитного клапана подается ток силой 2 А. Поршень клапана перемещается и перекрывает поступление тормозной жидкости из главного цилиндра. Давление в рабочем цилиндре колеса остается неизменным, даже если водитель продолжает нажимать на педаль тормоза.

Фаза сброса давления

Если опасность блокировки колеса сохраняется, БУ подает на обмотку электромагнитного клапана ток большей сипы: 5 А. В результате дополнительного перемещения поршня клапана открывается канал, через который тормозная жидкость сбрасывается в аккумулятор давления жидкости. Давление в колесном цилиндре падает. БУ выдает команду на включение гидронасоса, который отводит часть жидкости из аккумулятора давления. Педаль тормоза приподни­мается, что ощущается по биению тормозной педали.

Индуктивный колесный датчик состоит из обмотки 5 и сердечника 4. Зубчатое колесо 6 имеет частоту вращения, равную частоте вращения колеса. При вращении колеса 6, выполненного из ферромагнитного железа, изменяется магнитный поток в зависимости от прохождения зубьев ротора, что приводит к изменению переменного напряжения в катушке. Частота изменения напряжения зависит от частоты вращения зубчатого колеса, т. е. частоты вращения колеса автомобиля. Воздушный зазор и размеры зубца оказывают большое влияние на амплитуду сигнала. Это позволяет определить положение колеса по интервалам между зубцами в пределах половины или трети. Сигнал от индуктивного датчика передается в электронный блок управления.

Рис. Индуктивный датчик:

1 – постоянный магнит; 2 – корпус; 3 – крепление датчика; 4 – сердечник; 5 – обмотка; 6 – зубчатое колесо

Индуктивные датчики могут крепиться на валу привода колеса, на валу привода конических шестерен для заднеприводных моделей автомобиля, на поворотных цапфах и внутри ступицы колеса.

Рис. Крепление индуктивного датчика на поворотной цапфе:

1 – тормозной диск; 2 – передняя ступица; 3 – защитный кожух; 4 – винт с внутренним шестигранным зацеплением; 5 – датчик; 6 – поворотная цапфа

Рис. Крепление индуктивного датчика внутри ступицы колеса:

1 – фланец крепления колеса; 2 – шарики; 3 – кольцо датчика ABS; 4 – датчик; 5 – фланец крепления к подвеске.

Более совершенны активные датчики, применяемые для измерения частоты вращения колеса. Чувствительный элемент электронной ячейки 2 такого датчика изготовлен из материала, электропроводность которого зависит от напряженности магнитного поля. При вращении задающего диска 3 происходят изменения магнитного поля. Вызываемые изменяющимся магнитным полем колебания проходящего через чувствительный элемент тока преобразуются в электронной схеме в колебания напряжения, выводимого на внешние контакты датчика. При вращении задающего диска установленный около него датчик вырабатывает прямоугольные импульсы, частота которых соответствует частоте вращения диска. Преимуществом данного датчика по сравнению с ранее применяемыми системами является точная регистрация частоты вращения при ее снижении вплоть до остановки колеса.

Рис. Активный датчик:

1 – корпус датчика; 2 – электронная ячейка датчика; 3 – задающий диск

Как правило, на щитке приборов должна находиться контрольная лампочка, которая должна гаснуть при работающем двигателе или если скорость автомобиля превышает 5 км/час. Она также загорается, если одно из колес пробуксовывает более 20 секунд или если электроснабжение выдает напряжение менее 10 вольт. Контрольная лампочка системы преду­преждает водителя о том, что из-за неисправ­ности системы произошло ее автоматическое отключение, при этом однако тормозная система про­должает функционировать как обычная тормозная система без АБС.

Аналогичный принцип работы применяется и для АБС 2Е фирмы Бош, однако в этой системе применяется уравнивающий цилиндр для уравнивания давления в тормозном приводе задних колес, который позволяет вместо четырех электромагнитных клапанов применять три клапана. В состав модулятора входят таким образом не четыре, а три электромагнитных клапана, уравнивающий цилиндр, двухпоршневой нагнетательный гидронасос, два аккумулятора давления, реле насоса и реле электромагнитных клапанов.

Система работает следующим образом. При обычном торможении тормозная жидкость под давлением из главного цилиндра поступает в рабочие цилиндры обоих передних колес и правого заднего колеса через три электромагнитных клапана, которые в исходном положении закрыты. В рабочий цилиндр левого заднего колеса тормозная жидкость подается через открытый перепускной клапан уравнивающего цилиндра. Когда возникает опасность блокировки одного из передних колес, БУ выдает команду на закрытие соответствующего электромагнитного клапана, предотвращая повышение давления в колесном цилиндре. Если опасность блокировки колеса не устранена, к электромагнитному клапану подводится ток, обеспечивающий открытие участка магистрали между рабочим цилиндром колеса и акку­мулятором давления. Давление в приводе тормоза падает, после чего БУ выдает команду на включение гидронасоса, который перегоняет жидкость в главный цилиндр через уравнивающий цилиндр.

Рис. АБС 2Е фирмы Бош в фазе обычного торможения:

1 – главный тормозной цилиндр; 2 – электромагнитный клапан; 3 – аккумулятор давления; 4 – электромагнитный клапан заднего моста; 5 – нагнетательный насос; 6 – перепускной клапан; 7 – поршень уравнительного цилиндра; Ппр – переднее правое колесо; Пл – переднее левое колесо; Зпр – заднее правое колесо; Зл – заднее левое колесо

Когда возникает опасность блокировки одного из задних колес, давление тормозной жидкости будет регулироваться в обоих задних тормозах одновременно, с тем чтобы не допустить движения задних колес юзом.

Электромагнитный клапан привода правого заднего тормоза устанавливается в положение удержания постоянного давления и перекрывает участок магистрали между главным цилиндром и колесным цилиндром. На противоположные торцевые поверх­ности поршня 7 уравнивающего цилиндра начинает действовать давление различной величины, вследствие чего поршень со штоком переместится в сторону наименьшего давления (на рисунке – вверх) и закроет клапан 6, разъединив главный цилиндр и колесный цилиндр левого заднего тормоза. Поршень уравнивающего цилиндра из-за образующейся разницы давления в рабочих полостях над ним и под ним всякий раз устанавли­вается в такое положение, при котором давление в приводах обоих задних тормозов одинаково.

Если сохраняется опасность блокировки задних колес, БУ запитывает электромагнитный клапан в контуре задних колес током в 5 А. Золотник электромагнитного клапана перемещается и открывает участок контура между рабочим цилиндром правого заднего тормоза и аккумулятором давления жидкости. Давление в контуре уменьшается. Гидронасос нагнетает тормозную жид­кость в главный цилиндр через уравнивающий цилиндр. В результате снижения давления в пространстве над поршнем 7 происходит очередное его перемещение, сжимается пружина центрального клапана, увеличивается объем пространства под верхним поршнем. Давление в левом колесном тормозном цилиндре снижается. Поршень уравнивающего цилиндра вновь устанавливается в положение, соответствующее равенству дав­лений в приводах обоих задних тормозов. После устранения угрозы блокировки колес электромагнитный клапан возвращается в исходное положение. Поршень уравни­вающего цилиндра под действием пружины также занимает исходное нижнее положение.

Более совершенной является АБС 5-й серии фирмы Бош с блоком 10, которая относится к новому поколению систем АБС, представляя собой замкнутую гидравлическую систему, не имеющую канала для возврата тормозной жидкости в бачок, питающий главный тор­мозной цилиндр. Схема этой системы показана на примере автомобиля Вольво S40.

Рис. Схема АБС 5-й серии фирмы Бош:

1 – обратные клапаны; 2 – клапан плунжерного насоса; 3 – гидроаккумулятор; 4 – камера подавления пульсации в системе; 5 – электро­двигатель с эксцентриковым плунжерным насосом; 6 – бачок для тормозной жидкости; 7– педаль ра­бочего тормоза; 8 – усилитель; 9 – главный тормозной цилиндр; 10 – блок АБС; 11 – выпускные управ­ляемые клапаны; 12 – впускные управляемые клапаны; 13 – дросселирующий клапан; 14-17 – тормозные механизмы

Электронные и гидравлические компонен­ты смонтированы как единый узел. В их чис­ло входят, кроме указанных в схеме: реле для включения электродвигателя плунжер­ного насоса 5 и реле включения впускных 12 и выпускных 11 клапанов. Внешними ком­понентами являются: сигнальная лампа работы АБС в приборной панели, которая загорается в случае возникновения неисправ­ности в системе, а также при включении за­жигания в течение четырех секунд; выключа­тель стоп-сигнала и датчики скорости враще­ния колес. Блок имеет вывод на диагностиче­ский разъем.

Дросселирующий клапан 13 устанавливается для снижения тормозного усилия на задних колесах с целью избежания их блокировки. В связи с тем, что тормозная сис­тема имеет настройку по более «слабому» заднему колесу (это означает, что давление тормозов задних колес одинаковое, а его ве­личина устанавливается по наиболее близко­му к блокированию колесу), дросселирую­щий клапан устанавливается один на контур.

Тормозные механизмы 14-17 включают тормозные диски и однопоршневые суппорты с плавающей скобой и тормозными колодка­ми, оборудованными скобами контроля из­носа фрикционных накладок. Тормозные ме­ханизмы задних колес аналогичны передним, но имеют сплошные тормозные диски (на передних – вентилируемые) и исполнительный механизм стояночного тормоза, вмонтированный в суппорт.

При нажатии педали 7 тормоза ее рычаг ос­вобождает кнопку выключателя стоп-сигнала, который, срабатывая, включает лампочки стоп-сигналов и приводит АБС в дежурное со­стояние. Движение педали через шток и вакуумный усилитель 8 передается на поршни главного цилиндра 9. Центральный клапан во вторичном поршне и манжета первичного поршня перекрывают сообщение контуров с бачком 6 для тормозной жидкости. Это приводит к росту давления в тормозных контурах. Оно действует на поршни тормозных цилиндров в тормозных суппортах. В результате этого тормозные колодки прижимаются к дискам. При отпускании педали все детали возвращаются в исходное положение.

Если при торможении одно из колес близ­ко к блокировке (о чем сообщает датчик ча­стоты вращения), блок управления перекры­вает впускной клапан 12 соответствующего контура, что препятствует дальнейшему рос­ту давления в контуре независимо от роста давления в главном цилиндре. В то же время начинает работать гидравлический плун­жерный насос 5. Если вращение колеса про­должает замедляться, блок управления от­крывает выпускной клапан 11, позволяя тор­мозной жидкости возвратиться в гидроакку­муляторы 3. Это приводит к уменьшению давления в контуре и позволяет колесу вра­щаться быстрее. Если вращение колеса чрез­мерно ускоряется (по сравнению с другими колесами) для повышения давления в кон­туре блок управления перекрывает выпуск­ной клапан 11 и открывает впускной 12. Тор­мозная жидкость подается из главного тор­мозного цилиндра и с помощью плунжерно­го насоса 5 из гидроаккумуляторов 3. Демпферные камеры 4 сглаживают (подав­ляют) пульсации, возникающие в системе при работе плунжерного насоса.

Выключатель стоп-сигнала информирует модуль управления о торможении. Это поз­воляет модулю управления более точно кон­тролировать параметры вращения колес.

Диагностический разъем служит для под­соединения Volvo System Tester при выполне­нии диагностики.

Если автомобиль оборудован системой DSA (система динамической стабилизации), то модуль управления системой DSA получа­ет данные о частоте вращения колес, которые необходимы для измерения пробуксовывания. Эту информацию модуль управления систе­мой DSA получает с модуля управления сис­темой АБС. Для этой цели служат три комму­никационные линии. Система DSA не исполь­зует тормоза для контроля пробуксовывания.

Внутренние реле (для насоса и клапанов) имеют отдельные соединения, защищенные плавкими предохранителями.

При включении зажигания система прове­ряет электрическое сопротивление всех ком­понентов. Во время этой проверки горит сиг­нальная лампа. После завершения проверки (4 с) лампа должна погаснуть.

При движении автомобиля выполняется проверка элек­тродвигателя насоса, его реле, впускных и выпускных клапанов на скорости 6 км/ч. На скорости 40 км/ч осуществляется провер­ка работы колесных датчиков. Во время рабо­ты системы насос функционирует в не­прерывном режиме.

Во время движения в дождь или снегопад при скорости движения более 70 км/час и включенном стеклоочистителе лобового стекла тормозные накладки передних тормозов периодически (каждые 185 секунд) кратковременно (на 2,5 секунды) прижимаются к тормозным дискам с минимальным давлением (0,5…1,5 кгс/см2). В результате этого накладки и диски очищаются, и улучшается эффективность торможения.

  • Тормозные жидкости
  • Основные неисправности тормозной системы

Метки: АБС, Тормозная система