Тиристорные системы зажигания
Тиристорные системы зажигания
Система с непрерывным накоплением энергии содержит двухтактный преобразователь напряжения, состоящий из двух транзисторов VT1 и VT2, трансформатора Т1, резисторов R2 и R3 и конденсатора С1. Двухполупериодный выпрямитель с нулевой точкой (диоды VD1 и VD2) служит для выпрямления выходного напряжения преобразователя. Выпрямитель нагружен накопительным конденсатором С2, параллельно которому подключен резистор R4. Тиристор VS прерывает ток в первичной обмотке L1 катушки зажигания (трансформатор Т2). Управление тиристором осуществляется контактным S2 синхронизатором момента зажигания.
Рис. Тиристорная система зажигания с непрерывным накоплением энергии в электростатическом поле конденсатора
При замыкании контактов S1 выключателя зажигания срабатывает двухтактный преобразователь напряжения. На выводах вторичной обмотки L2 трансформатора Т1 появляется переменное напряжение прямоугольной формы с амплитудой 200—500 В. Выпрямленное постоянное напряжение подается на заряд накопительного конденсатора С2, если контакты S2 синхронизатора момента зажигания замкнуты. Тиристор находится в закрытом состоянии, так как его цепь управления шунтирована замкнутыми контактами S2 синхронизатора.
В момент размыкания контактов S2 синхронизатора напряжение от аккумуляторной батареи GB подается через резистор R1 к управляющему электроду тиристора VS. Через открытый тиристор происходит разряд конденсатора С2 на первичную обмотку L1 катушки зажигания Т2, вследствие чего в ее вторичной обмотке L2 индуктируется высокая ЭДС. При соответствующем подборе параметров элементов рассмотренной системы зажигания можно на всех режимах работы двигателя обеспечить полный заряд конденсатора и получить практически не зависящее от частоты вращения коленчатого вала двигателя вторичное напряжение. Цепочка C1—R2 обеспечивает надежный пуск транзисторного преобразователя.
В системе с импульсным накоплением энергии при замыкании контактов S1 выключателя зажигания и размыкания контактов S2 синхронизатора момента зажигания на базу транзистора VT подается положительный импульс напряжения от аккумуляторной батареи GB. Транзистор переходит в состояние насыщения, пропуская через эмиттер-коллекторный переход и первичную обмотку L1 трансформатора ток, создающий магнитное поле в трансформаторе. В момент замыкания контактов S2 синхронизатора цепь базы транзистора КГ замыкается накоротко, транзистор переходит в состояние отсечки, ток в обмотке L1трансформатора исчезает, а во вторичной обмотке индуктируется высокая ЭДС. В это время замкнутые контакты S2 синхронизатора шунтируют цепь управления тиристором. Тиристор закрыт, а конденсатор С через диод VD1 заряжается до напряжения 200—400 В.
Рис. Тиристорная система зажигания с импульсным накоплением энергии в электростатическом поле конденсатора
При следующем замыкании контактов S2 синхронизатора к управляющему электроду тиристора через резисторы Ra, Rl, R3 подается напряжение от аккумуляторной батареи. Тиристор открывается. Ток разряда конденсатора проходит через первичную обмотку L1 катушки трансформатора и на выводах вторичной обмотки появляется импульс высокого напряжения, подаваемого на свечу зажигания.
В системах зажигания с накоплением энергии в электростатическом поле конденсатора обеспечивается более высокая скорость нарастания вторичного напряжения, что делает ее менее чувствительной к наличию шунтирующих резисторов нагара свечей зажигания. Однако вследствие высокой скорости роста вторичного напряжения возрастает напряжение пробоя по сравнению с системами с накоплением энергии в магнитном поле. Кроме того, из-за сокращения длительности индуктивной составляющей искрового разряда ухудшаются воспламенение и сгорание топливовоздушной смеси при пуске двигателя и работе его на режимах частичных нагрузок.
- Система зажигания с датчиком Холла
- Контактно-транзисторная система зажигания
- Зажигание то магнето
Метки: Система зажигания